Inorganic Chemistry

Carbene-Anchored Boryl- and Stibanyl-Phosphaalkenes as Precursors for Bis-Phosphaalkenyl Dichlorogermane and Mixed-Valence Ag^I/Ag^{II} Phosphinidenide

Ekta Nag, Sridhar Battuluri, Bhavya Bini Sinu, and Sudipta Roy*

precursors for the bis-phosphalkenyl dichlorogermane $[(cAAC = P)_2GeCl_2]$ (6) and the first molecular example of a neutral polymeric mixed-valence Ag^I/Ag^{II} phosphinidenide complex $[(cAACP)_2Ag_4^{I}Ag^{II}Cl_4]_n$ (7). All compounds have been characterized by single-crystal X-ray diffraction and further investigated by nuclear magnetic resonance (NMR), mass spectrometric analysis, and UV–vis/fluorescence measurements. The paramagnetic complex 7 has been characterized by ESR spectroscopy. Cyclic voltammetry studies of compounds 3/5 have suggested possible one-electron quasi-reversible reductions, indicating their redox noninnocent behavior in solution. Quantum chemical studies revealed the electron-sharing nature of the P–B and P–Sb σ bonds in compounds 3 and 5, and the polar C_{cAAC} = P bonds in compounds 3, 5, and 6 prevailing their phosphaalkene structures over phosphinidenes.

INTRODUCTION

Phosphinidenes (RP) are the species with two available lone pairs on phosphorus in their singlet ground state, which have been first detected in the gas phase by mass spectrometry¹ and in low-temperature matrices by various spectroscopic techniques.² The first stable and structurally characterizable phosphinidene was initially reported by the group of Mathey in the form of its terminal transition metal complexes (A) in 1982³ and later in 1996 by the group of Bertrand.³ In 2010, Robinson's group employed N-heterocyclic carbenes (NHCs) as the stabilizing ligands to isolate the corresponding parent phosphinidene complexes, L' = P - H(B),⁴ followed by other groups who stabilized phosphinidenes⁵ in various forms, such as bis-carbene adduct of $P_{2,}^{6}$ chloro-phosphinidenes (C),⁷ and silylene-phosphinidenes (**D**),⁸ utilizing the σ -donating and π accepting ligands, such as cyclic alkyl(amino) carbenes (cAACs) (E) (Figure 1). Recently, Bertrand's group reported the existence of highly reactive (phosphino)phosphinidene (F), featuring a P-P multiple bond.⁹ In 2017, Cummins' group reported the generation of transient phosphinidene intermediates upon heating dibenzo- $7\lambda^3$ -phosphanorborna-diene derivatives.¹⁰ Experimental results¹¹ and theoretical calculations¹² revealed that phosphinidenes can be regarded as phosphaalkenes with the predominant $C_{\text{carbene}}=P$ bond having inverse electron distribution $(C^{\delta_+}-P^{\delta_-})$, whereas the Lewis basic behavior of the former can be established by its coordination chemistry¹³ prevailing the presence of two lone pairs on phosphorus. Recently, the chemistry of carbene-

stabilized phosphaalkenyl species $(R_2C=\overline{P})$, known as the phosphinidenides,¹⁴ has greatly attracted the attention of the synthetic main group chemists. In this context, stabilization of the carbene-phosphinidenide complexes of the group 14 elements^{14b,15} by the von Hänisch and Inoue groups and transition metals¹⁶ by the Tamm group is noteworthy. However, the reports on coordination chemistry of cAACstabilized phosphinidenides are scarce.¹⁷ In our recent work, we focused on the syntheses of $[R_2CP]M$ salts.¹⁸ As a part of our research interest, we aimed to incorporate the Lewis acidic boryl and stibanyl functionalities at the phosphorus atom of cAAC-anchored phosphinidene to study the effect of the heteroatoms (E = B, Sb) on the nature of the C_{cAAC} =P and P-E bonds and their interim reactivities toward inorganic and transition metal halides. Although, in recent times, low valent boron $^{19-22}$ and antimony 23 compounds have attracted significant interest, incorporation of the boryl- and stibanylsubstituents²⁴ into the cAAC-stabilized phosphaalkenes is not documented. Herein, we report on the first syntheses of cAACanchored boryl- and stibanyl-phosphaalkenes with the general formula cAAC=P-ER₂ [cAAC=P-B(N(ⁱPr)₂)₂] (3) Cy-

Received: April 4, 2022 Published: August 8, 2022

Figure 1. Selective examples of stable phosphaalkenes.

Scheme 1. Syntheses of cAAC-Stabilized Boryl- and Stibanyl-Phosphaalkenes, 3a-c/5a-b

cAAC=:(C(N-2,6-^{*i*}Pr₂C₆H₃)(C₆H₁₀)(CMe₂)(CH₂)) (3a); Me₂-cAAC=:(C(N-2,6-^{*i*}Pr₂C₆H₃)(CMe₂)₂(CH₂)), (3b); Et₂-cAAC=:(C(N-2,6-^{*i*}Pr₂C₆H₃)(CEt₂)(CMe₂)₂(CH₂)), (3c); cAAC=P-Sb(Tip)₂ (5) (Tip = 2,4,6-triisopropylphenyl; Cy-cAAC (5a); Me₂-cAAC (5b)) by treating cAAC-stabilized potassium phosphinidenides (cAAC=PK)¹⁸ with halo-borane²⁵ and halo-stibane,²⁶ respectively. Moreover, we explored the reactivity of 3/5 and successfully utilized these compounds as precursors to bis-phosphaalkenyl dichlorogermane [(cAAC=P)₂GeCl₂] (6) and a polymeric chain of the mixed-valence Ag^I/Ag^{II}-phosphinidenide complex [(Cy-cAAC-P)₂Ag₄¹Ag^{II}Cl₄]_n (7) upon treatment with GeCl₂·dioxane and AgCl, respectively.

RESULTS AND DISCUSSION

Initially, the dark red crystals of various cyclic alkyl(amino) carbene (cAAC)-stabilized potassium phosphinidenides (cAAC=PK, 2)¹⁸ were synthesized and isolated in good yields. The toluene solution of 1.3 equiv (a little excess is required for an improved yield of the intended product, **3a**) of the dark red crystalline compound Cy-cAAC=PK (**2a**)¹⁸ cooled to 0 °C (using an ice bath) was added to the toluene solution (cooled to -110 °C using a THF/liquid N₂ bath) of 1.0 equiv of 1-bromo-*N*,*N*,*N*,*N*'-tetraisopropylboranediamine (**1**). After, the resultant reaction mixture was stirred for 30 min at low temperature (-110 °C); then, the temperature was slowly raised to room temperature (rt) and the mixture was stirred for 24 h, while the color of the reaction mixture turned

slowly from dark brownish-red to golden-yellow over a period of 2 h. The reaction mixture was filtered after 24 h. The filtrate was concentrated under high vacuum, resulting in the formation of the yellow crystalline solid, which was then extracted in *n*-hexane to obtain the boryl-phosphaalkene 3a $[Cy-cAAC = P-B(N(^{i}Pr)_{2})_{2}]$. Compound 3a was crystallized at rt from the concentrated n-hexane solution to obtain the yellow needle-shaped single crystals in 81% yield (Scheme 1). Similarly, compounds 3b $[Me_2-cAAC=P-B(N(^iPr)_2)_2]$ and **3c** $[Et_2-cAAC = P-B(N(Pr)_2)_2]$ were isolated in 85 and 76% yields, respectively, when the corresponding potassium phosphinidenides 2b (Me₂-cAAC=PK)¹⁷ and 2c (Et₂-cAAC = PK) reacted with 1 in 1.3:1 molar ratio (Scheme 1). Reduced yields (64-72%) of 3a-3c were observed when 1 and 2 reacted in 1:1 molar ratio under similar reaction conditions. **3a-3c** were structurally characterized by single-crystal X-ray diffraction and NMR spectroscopic studies. When similar reactions were performed using cAAC=PK, 2 (Cy-cAAC, 2a; Me₂-cAAC, **2b**)¹⁷ and the chlorostibane **4**, $(Tip)_2$ Sb-Cl (Tip =2,4,6-triisopropylphenyl, 4) in 1:1 molar ratio in THF at -110°C, golden-yellow blocks of the corresponding stibanylphosphaalkenes, **5a-b** $[cAAC=P-Sb(Tip)_2]$, were isolated in 80 and 89% yields, respectively, from the corresponding concentrated *n*-hexane solutions at rt after 4-6 days (Scheme 1). The crystals of **3a-c/5a-b** were found to be soluble in THF, toluene, and n-hexane and stable in both solution and solid state at rt for more than six months under an inert atmosphere. 3a-c/5a-b melted at $161-163^{\circ}C$ (3a), $123-125^{\circ}C$ (3b),

148-150°C (3c), 190-192°C (5a), and 178-180°C (5b). 3ac/Sa-b were characterized by ¹H, ¹³C {¹H}, ¹¹B, ³¹P NMR spectroscopy and high-resolution mass spectrometry (HRMS) in solution (see Supporting Information (SI)). The ¹³C {¹H} NMR spectra of 3a-c exhibited doublets at 204.3 ($J_{C-P} = 59.6$ Hz), 204.3 (J_{C-P} = 57.5 Hz), and 205.3 (J_{C-P} = 61.6 Hz) ppm, respectively, for C_{cAAC} , which is comparable with those of 2a $(207 \text{ ppm}, J_{C-P} = 81 \text{ Hz})^{18}$ and Cy-cAAC = P-Cl⁸ (210 ppm, $J_{C-P} = 104.4$ Hz). The ¹¹B spectra of **3a-c** exhibited broad singlets at δ = 41.8, 40.8, and 42.1 ppm, respectively (theoretically calculated $\delta = 37.5$ (3a) and 39.0 ppm (3b) at the BP86-D3(BJ)/def2-TZVPP level), which is found to be downfield shifted when compared with the same for 1 (29.48 ppm). The ³¹P spectra of 3a-c exhibited much upfield-shifted singlets at δ = 28.6, 22.3, and 17.9 ppm, respectively, when compared with those of 2a (206.9 ppm)¹⁸ and Cy-cAAC = P-Cl (163.4, 160.3 ppm).⁸ The 1,3-bond correlated ¹H-¹⁵N HMBC spectrum of 3a showed two singlets at $\delta = -273.11$ $(N'Pr_2)$ and -239.91 (:C $(N-2,6-Pr_2C_6H_3)$) ppm, indicating a decreased back donation from P to C_{cAAC} as expected.²⁷ The ¹³C {¹H} NMR spectra of **5a-b** exhibited doublets at δ = 211.0 $(J_{C-P} = 98.9 \text{ Hz})$ and 211.4 $(J_{C-P} = 96.9 \text{ Hz})$ ppm, respectively, for C_{cAAC}, which is slightly downfield shifted when compared with the same for 3a-b. ³¹P resonances of 5a-b were observed as singlets at $\delta = 49.1$ and 45.8 ppm, respectively, which are slightly downfield shifted when compared with those of 3a-c.

Compound 3a [Cy-cAAC=P-B- $(N^iPr_2)_2$] crystallizes in the monoclinic space group $P2_1/c$ (Figure 2). The molecular structure of 3a consists of a Cy-cAAC group attached to the P atom with bent geometry and bonded to a B atom attached to two N(ⁱPr)₂ substituents. The B atom of 3a exhibits a distorted trigonal planar geometry with the sum of the bond angle of 358.28°, whereas the P atom with a lone pair possesses the

Figure 2. Molecular structure of compound **3a** $[Cy-cAAC=P-B(N'Pr_2)_2]$. The anisotropic displacement parameters are depicted at the 50% probability level. Hydrogen atoms are omitted for clarity. The positions of C22/C22A, C24/C24A, and C25/C25A (left, top, CH₂ and CMe₂ groups) are slightly disordered. Selected experimental [calculated at BP86/Def2-TZVPP] bond lengths [Å] and bond angles [°]: C21-P1 1.731(3) [1.739], C21-N2 1.379(4) [1.378], P1-B1 1.994(4) [1.980], B1-N1 1.433(5) [1.446], B1-N3 1.445(5) [1.468], C21-P1-B1 113.88(16) [113.3], N1-B1-P1 121.5(3) [116.1], N3-B1-P1 113.9(3) [119.4], and N3-B1-N1 122.9(3) [122.6].

bent geometry with the bond angle of $114.0(2)^{\circ}$ (C21-P1-B1). The C21-P1 bond length in 3a is 1.731(3) Å, which is very close to those of Cy-cAAC=P-Cl⁸ (1.735(1) Å), (CycAAC)₂P₂ (1.719(7) Å), and (Cy-cAAC)₂P₄ (1.747(2) Å),⁶ containing a C_{carbene}=P double bond. The B1-P1 distance in 3a is 1.994(4) Å, which is significantly longer when compared with the same for $[(Me_2-CAAC)B(PMe_3)=B(NMe_2)]$ $(1.904(2) \text{ Å})^{22}$ and the B–P covalent bonds $(1.96 \text{ Å})^{28}$ The C21-N2 bond distance in the Cy-cAAC unit of 3a is longer (1.379(4) Å) than that in Cy-cAAC=P-Cl⁸ (1.3632(18) Å), which is in between a C-N single and double bond. The molecular structures of 3b and 3c are similar to that of 3a and are given in the Supporting Information (SI). 3b [Me₂ $cAAC = P - B(N^{i}Pr_{2})_{2}$ and 3c $[Et_{2}-cAAC = P - B(N^{i}Pr_{2})_{2}]$ crystallize in the orthorhombic $P2_12_12_1$ and monoclinic $P2_1/$ n space groups, respectively, and the detailed structural descriptions are given in the SI.

Compound 5a crystallizes in the orthorhombic space group *Pccn*, and the asymmetric unit contains one molecule of 5a and half of a lattice *n*-hexane molecule (Figure 3). The Sb-atom

Figure 3. Molecular structure of compound 5a $[Cy-cAAC = P-Sb(Tip)_2]$. The anisotropic displacement parameters are depicted at the 50% probability level. Hydrogen atoms are omitted for clarity. The solvated *n*-hexane molecule is shown. Selected experimental [calculated at BP86/def2-TZVPP] bond lengths [Å] and bond angles [°]: N1-C51 1.360(3) [1.362], C51-P1 1.736(3) [1.724], P1-Sb1 2.5385(8) [2.555], N1-C51-P1 118.06(19) [117.37], and C51-P1-Sb1 107.43(9) [108.7].

adopted a distorted trigonal pyramidal geometry and bonded to one P atom and two Tip groups. The C51-P1-Sb1 bond angle is found to be 107.43(9)°. The torsion angle, N1-C51-P1-Sb1, was found to be 165.04(6)°, indicating the *anti*orientation of the heteroatoms across the C51-P1 bond. The C51-P1 bond length is found to be 1.736(3) Å, which is longer than that of **3a** and Cy-cAAC=PK (1.703(4) Å)¹⁸ but similar to (Cy-cAAC)₂P₄ (1.747(2) Å)^{6a} and (^{IPr}NHC)₂P₂⁻⁷ (1.7502(11) Å). The Sb1-C22 and Sb1-C55 bond lengths are found to be 2.205(3) and 2.188(3) Å, respectively, which are significantly longer than the reported Sb-C bond lengths of 2.09(3)–2.171(4) Å.²⁹ The C1-N1 bond length in **5a**

Figure 4. Left: cyclic voltammograms of $[(Me_2-cAAC)P-B(N(^iPr)_2)_2]$ (**3b**) in THF containing 0.1 M $[n-Bu_4N]ClO_4$ as the electrolyte (CE: Pt, WE: GC, RE: Ag). Right: (top) the concomitant chemical process involved; (bottom) X-band ESR spectrum of the reaction mixture containing $[(Cy-cAAC)P-B(N(^iPr)_2)_2]$ (**3a**) and KC₈ in 1:1 molar ratio in THF at 293 K (*in situ*).

Scheme 2. Synthesis of Bis-Phosphaalkenyl Dichlorogermane $[(cy-cAAC = P)_2GeCl_2]$ (6)

(1.360(3) Å) is found to be shorter than that of 3a. The molecular structure of 5b is given in the SI.

Fascinated by the bright luminescence exhibited by 3/5under a laboratory UV lamp of wave length 254 nm, we have studied the photophysical properties in solution and solid state (see SI for details). The redox properties of 3, 5 have been studied by cyclic voltammetry (CV, see SI). The cyclic voltammograms of 3a-3b, measured in 0.1 M THF solution of [*n*-Bu₄N]ClO₄, showed quasi-reversible one-electron processes at $E_{1/2} = -0.88$ V (3a) and -0.83 V (3b), suggesting the generation of the corresponding radical anions 3a^{•-} and 3b^{•-} respectively, (Figures 4 and SI), which is a characteristic feature for most of the cAAC-containing main group compounds. The calculated electron affinity values of 3a/3b were found to be -1.35 eV/-1.19 eV. The cyclic voltammograms of 5a/5b, measured in 0.1 M THF solution of [*n*-Bu₄N]ClO₄, also showed a quasi-reversible one-electron process at $E_{1/2} = -1.07 \text{ V/} - 1.14 \text{ V}$, suggesting the generation of the corresponding radical anion $5a^{\bullet-}/5b^{\bullet-}$ (see SI). The natural bond orbital (NBO) analysis of the radical anion, 3a⁻⁻ (at the BP86/def2-TZVPP level of theory), reveals that the incoming electron occupies the LUMO ($\pi^*_{N=C-P}$) of 3a (α - SOMO of $3a^{\bullet-}$, see SI). The *in situ* generation of the carbenecentered radical has been proved by the observed broad EPR resonance at $g = \sim 2$ (g = 1.9982) at 293 K (Figure 4, right), suggesting the coupling with other nuclei (¹¹B, ¹⁴N, ³¹P) (see SI).

Geometry optimizations of 3/5 (at the BP86/Def2-TZVPP level of theory) revealed the singlet states as the electronic ground state in all the cases. The natural bond orbital (NBO) analysis (at the BP86/def2-TZVPP level of theory) of 3a/b infers the presence of a C_{cAAC} =P bond where the σ bond is polarized toward the C_{cAAC} atom (65%) with an occupancy of 1.96 e and the π bond is polarized toward the P atom (57%) with an occupancy of 1.89 e (see SI for details). The energy decomposition analysis coupled with natural orbitals for chemical valence (EDA-NOCV) for 3a, 5a shows that the interaction of the neutral cAAC=P and $B(N-Pr_2)_2/Sb(Tip)_2$ fragments in their electronic doublet states form the electronsharing σ -bonds, depicting the best bonding description with the lowest ΔE_{orb} values (see SI).³⁰ Previously reported EDA-NOCV analyses³¹ have shown that the nature (covalent vs. dative) of the C_{cAAC}-P bond can change depending upon the chemical fragment bonded to the other side of the P atom.

It is evident that the steric and electronic properties of carbene-stabilized phosphinidenes could be varied using different substituents on the phosphorus atom and also by varying the carbene fragment.^{5,32} However, the coordination properties of this class of molecules, especially with cAACs, have not been well explored. In recent past, the Lavoie, Tamm,^{4c} and Dias^{13a} groups described the syntheses of the Nheterocyclic carbene-phosphinidenide transition metal complexes. We explored the possibility of utilizing these compounds as cAACP⁻ transfer reagents to the main group and transition metal halides, considering the presence of the potential halide abstracting Lewis acidic boron and antimony centers in 3 and 5, respectively. Initially, we chose Nheterocyclic carbene (NHC, 1,3-bis(2,6-diisopropylphenyl)imidazol-2-ylidene)-stabilized dichlorosilylene [(NHC)SiCl₂] and dichlorogermylene [(NHC)GeCl₂] as the source of main group halides. Separate reaction mixtures of 1:1 molar ratio of 3a, [(NHC)SiCl₂] and 3a, [(NHC)GeCl₂] in toluene stirred for 12 h at rt did not give any new product. However, the reaction of a 1:1 molar ratio of 3a and GeCl₂·dioxane in toluene at rt gave the bis-phosphaalkenyl dichlorogermane $[(Cy-cAAC = P)_2GeCl_2]$ (6) in 40% yield after 12 h of stirring (Scheme 2). The needle-shaped orange-colored single crystals of 6 were obtained from a concentrated DCM solution kept in a -40 °C freezer. The formation of 6 can be described by the disproportionation of the Ge^{II} species to Ge^{IV} (6) and Ge^{0} (black ppt) along with the formation of the byproduct $(N'Pr_2)_2BCl$, which was confirmed by the NMR spectroscopic analysis of the crude reaction mixture (see SI).

Compound 6 [(Cy-cAAC=P)₂GeCl₂] crystallizes in the monoclinic space group C2/c (Figure 5). The molecular structure of compound 6 consists of two Cy-cAAC units, and each Cy-cAAC unit is linked to a bent P atom with a bond angle of 110.3(2)°. Both the Cy-cAACP units are bonded to a Ge(IV) center with a pyramidal geometry containing two Cl atoms and a P-Ge-P bond angle of about Ge1 143.29(3)°, suggesting the presence of a lone pair.³⁴ The Ge-Cl unit is

Figure 5. Crystallographic asymmetric unit of compound 6 [(CycAAC = P)₂GeCl₂]. The anisotropic displacement parameters are depicted at the 50% probability level. Hydrogen atoms are omitted for clarity. The positions of Ge1/Ge2 and Cl1/Cl9 are slightly disordered. Selected experimental [calculated at BP86/def2-TZVPP] bond lengths [Å] and bond angles [°]: N1-Cl1 1.338(7) [1.361], Cl1-P1 1.749(5) [1.750], P1-Ge1 2.302(3) [2.309], Ge1-Cl9 2.380(5) [2.246]. Cl1-P1-Ge1 107.1(10) [111.88], and P1-Ge1-Cl9 105.9(13) [110.84].

twisted by 91.32(7)° with respect to the Cy-cAAC plane across the P–Ge bond. Compound **6** possesses a two-fold center of symmetry passing through the Ge atom. The Ge atom of **6** exhibits a pyramidal geometry. Both the Ge–Cl bond lengths are found to be 2.38(5) Å, which is little shorter when compared with the same of that in the reported [(NHC)-GeCl₂] adduct (2.295(8) Å).³⁴ The C11–P1 bond length in **6** is found to be 1.749(5) Å (comparable with the theoretically calculated value of 1.750 Å), which is longer than the C_{carbene}– P bond of Cy-cAAC=PCl (1.735(1) Å) and (Cy-cAAC)₂P₂ (1.719(7) Å) containing a C_{carbene}=P double bond. The P1– Ge1 bond length is found to be 2.302(3) Å, which is closer to the reported value of 2.298(2) Å.³⁴

We also explored the reactivity of 3a with AgCl. So far, there are only a very few reports of the group 11 metal ion complexes of carbene-phosphinidenes, where the NHCphosphinidenes have been utilized as the stabilizing ligands leading to the isolation of the interesting halide-bridged octanuclear molecule {[IMes·PPh]-(AgCl)₂}^{13a} However, there are no reports on cAAC-phosphinidene-stabilized AgI complexes known so far. Treatment of 3a with an equivalent amount of AgCl in toluene at rt gave the cAACphosphinidene-stabilized neutral mixed-valence Ag^{II}/Ag^I complex 7 [(Cy-cAACP)₂Ag₄^IAg^{II}Cl₄]_n in 46% yield. The blockshaped, yellow-colored single crystals of 7 were from a concentrated DCM solution kept in a -20 °C freezer (Scheme 3), which were found to be stable in solid state and solution for three months under an inert atmosphere. The amorphous powder of 7 was melted at 151-153 °C. Complex 7 was found to be NMR inactive at rt and even at low temperature (-60)°C) and showed ESR signals at 293 K (Figure 6). The formation of the byproduct (Cy-cAAC)₂P₂ was confirmed by ³¹P NMR spectroscopy (58.2 ppm).³⁵

Complex 7 $[(Cy-cAAP)_2Ag_4^{I}Ag^{II}Cl_4]_n$ crystallizes in the orthorhombic space group Pnma (Figure 6). The crystallographic asymmetric unit of complex 7 consists of one CycAACP⁻ anion, two and half of the Ag ions, and two Cl ions. The repeating molecular unit of complex 7 (see SI) possesses two Cy-cAACP⁻ units, each containing a μ_3 -P⁻ ion, two terminal AgCl units with two coordinate Ag^I ions (Ag3), two bridging AgCl units (Ag2) with two μ -bridging Cl⁻ ions (Ag2ⁱⁱ—Cl2—Ag2 89.82(8)° and Ag2ⁱⁱ—Cl1—Ag2 95.63(7)°), and one paramagnetic Ag^{II} ion (Ag1; Figure 6), which is bridged between two Cy-cAACP⁻ ions (P1-Ag1- $P1^i$ 180.00(6)°). There is a center of inversion within this repeating unit of 7 passing through the Ag1 center (Ag^{II}, S =1/2). The 1D chain of $[(Cy-cAACP)_2Ag_4^{I}Ag^{II}Cl_4]_n$ has been propagated in a zig-zag fashion along the a-axis (Figure 6, bottom). The experimental bond parameters revealed the phosphinidenide nature of the cAACP unit with a C_{carbene}-N bond length of 1.326(8) Å, featuring a nearly C=N bond, and the $C_{carbene}$ -P bond length of 1.763(5) Å, featuring a coordinate bond. The packing diagram of 7 along the b- and c-axes is shown in the SI.

The paramagnetic nature of 7 is confirmed by ESR measurements, which suggests that the unpaired electron couples with two ¹⁴N (I = 1) and ³¹P (I = 1/2) nuclei leading to multiple hyperfine lines (Figure 7).

CONCLUSIONS

In summary, we have demonstrated the facile syntheses and characterizations of five redox active, luminescent cAAC-stabilized boryl- and stibanyl-phosphaalkenes (**3a-c, 5a-b**) in

Article

Figure 6. Crystallographic asymmetric unit of complex 7. The anisotropic displacement parameters are depicted at the 50% probability level. Hydrogen atoms are omitted for clarity. Selected experimental bond lengths [Å] and bond angles [°]: N8-C17 1.325(8), C17-P1 1.763(5), Ag1—P1 2.3835(13), Ag1—P1ⁱ 2.3836(13), Ag3—Ag2 3.2814 (8), Ag3—P1 2.3749(15), Ag3—Cl3, 2.3716(16), Ag2—Cl1 2.5219 (13), Ag2—P1 2.3754(15), Ag2—Cl2 2.6470 (18), P1—C17 1.763(5), N08—C17 1.325(8), N08—C4 1.460(8), N08—C13 1.524(7); P1—Ag1—P1ⁱ 180.00(6), Ag2ⁱⁱ—Cl2—Ag2 89.82(8), Ag2ⁱⁱ—Cl1—Ag2 95.63(7), Ag3—P1—Ag1 102.14(5), Ag3—P1—Ag2 87.38(5), and Ag2—P1—Ag1 122.28(5).

the solid state. The photophysical properties of compounds 3-5 have been investigated. Cyclic voltammetry studies of compounds 3-5 have suggested the *in situ* generation of the corresponding radical anions in solution, which has been proved experimentally by the observed EPR signal of the diluted reaction mixture of 3a in the presence of KC₈. Upon exploring the reactivity of compounds 3/5 toward GeCl₂· dioxane and AgCl, 3a gave the bis-phosphaalkenyl dichlor-ogermane (6) and a neutral polymeric mixed-valence Ag^I/Ag^{II} phosphinidenide complex (7), respectively. Theoretical inves-

Figure 7. X-Band ESR spectrum of the complex 7^{36} [(Cy-cAACP)₂Ag₄^IAg^{II}Cl₄]_n in the DCM solution at 293 K.

tigations revealed polar C_{cAAC} =P bonds in compounds 3–5, featuring the phosphaalkene nature. However, experimental and theoretical bond parameters revealed donor- and acceptor-type bonds between the C_{cAAC} and P atoms in 6, 7.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/acs.inorgchem.2c01132.

Experimental details, UV-vis, fluorescence, ESR and NMR spectra, HRMS data, crystallographic data, computational details, and optimized coordinates (PDF)

Accession Codes

CCDC 2079353–2079355, 2104745, 2130611, 2163309, and 2163339 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

CCDC 2104745, 2130611, 2163309–2163310, and 2079353–2079355 contain the supplementary crystallographic data for this paper. These data can be obtained free of charge

via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Center, 12 Union Road, Cambridge CB2 1EZ, U.K.; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Sudipta Roy – Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India; orcid.org/0000-0002-5883-4329; Email: roy.sudipta@iisertiruapti.ac.in

Authors

- Ekta Nag Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India; orcid.org/0000-0003-4490-4207
- Sridhar Battuluri Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India
- Bhavya Bini Sinu Department of Chemistry, Indian Institute of Science Education and Research (IISER) Tirupati, Tirupati 517507, India; orcid.org/0000-0001-5073-2072

Complete contact information is available at: https://pubs.acs.org/10.1021/acs.inorgchem.2c01132

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

SR gratefully acknowledges SERB, New Delhi for the ECR (ECR/2016/000733) and POWER grants (SPG/2021/003237). E.N. and S.B. thank IISER Tirupati for their respective SRF and JRF. We thank B.S. for initial structural refinement.

REFERENCES

(1) Wong, T.; Terlouw, J. K.; Keck, H.; Kuchen, W.; Tommes, P. The Thioxophosphane H-P = S and its Tautomer H-S-P, (Thiohydroxy)phosphinidene, are Stable in the Gas Phase. *J. Am. Chem. Soc.* **1992**, *114*, 8208–8210.

(2) (a) Li, X.; Weissman, S. I.; Lin, T. S.; Gaspar, P. P.; Cowley, A. H.; Smirnov, A. I. Observation of a Triplet Phosphinidene by ESR Spectroscopy. J. Am. Chem. Soc. 1994, 116, 7899-7900. (b) Glatthaar, J.; Maier, G. Reaction of Atomic Silicon with Phosphane: A Matrix-Spectroscopic Study. Angew. Chem., Int. Ed. 2004, 43, 1294-1296. (c) Bucher, G.; Borst, M. L.; Ehlers, A. W.; Lammertsma, K.; Ceola, S.; Huber, M.; Grote, D.; Sander, W. Infrared, UV/Vis, and W-band EPR Spectroscopic Characterization and Photochemistry of Triplet Mesitylphosphinidene. Angew. Chem., Int. Ed. 2005, 44, 3289-3293. (3) (a) Marinetti, A.; Mathey, F.; Fischer, J.; Mitschler, A. Generation and Trapping of Terminal Phosphinidene Complexes. Synthesis and X-Ray Crystal Structure of Stable Phosphirene Complexes. J. Am. Chem. Soc. 1982, 104, 4484-4485. (b) Marinetti, A.; Mathey, F.; Fischer, J.; Mitschler, A. Stabilization of 7-Phosphanorbornadienes by Complexation; X-Ray Crystal Structure of 2,3-Bis(methoxycarbonyl)-5,6-dimethyl-7-phenyl-7phosphanorbornadiene(pentacarbonyl)-chromium. J. Chem. Soc. Chem. Commun. 1982, 667-668. (c) Canac, Y.; A Baceiredo, A.; Gornitzka, H.; Stalke, D.; Bertrand, G. Synthesis of a Cationic 1,3-Diphospha-2,4-dipallada(II)tricyclo[1.1.1]pentane Derivative: The First Structurally Characterized Pyramidal µ2-Phosphinidene. Angew. Chem., Int. Ed. 1996, 34, 2677-2679.

(4) (a) Wang, Y.; Xie, Y.; Abraham, M. Y.; Gilliard, R. J., Jr.; Wei, P.; Schaefer, H. F., III; Schleyer, P. vR.; Robinson, G. H. CarbeneStabilized Parent Phosphinidene. Organometallics **2010**, *29*, 4778– 4780. (b) Hansen, K.; Szilvási, T.; Blom, B.; Inoue, S.; Epping, J.; Driess, M. A Fragile Zwitterionic Phosphasilene as a Transfer Agent of the Elusive Parent Phosphinidene (: PH). J. Am. Chem. Soc. **2013**, *135*, 11795–11798. (c) Doddi, A.; Bockfeld, D.; Bannenberg, T.; Jones, P. G.; Tamm, M. N-Heterocyclic Carbene-Phosphinidyne Transition Metal Complexes. Angew. Chem., Int. Ed. **2014**, *53*, 13568– 13572. (d) Tondreau, A. M.; Benkő, Z.; Harmer, J. R.; Grützmacher, H. Sodium Phosphaethynolate, Na(OCP), as a "P" Transfer Reagent for the Synthesis of N-Heterocyclic Carbene Spported P₃ and PAsP Radicals. Chem. Sci. **2014**, *5*, 1545–1554.

(5) (a) Niecke, E.; Becker, P.; Nieger, M.; Stalke, D.; Schoeller, W. W. Carbenoid or Lithium Complex of a Carbanion? Synthesis and Structure of $(Me_3Si)_2C = P(aryl) = C(Cl)Li(thf)3$ and LiCl Elimination to Give the Phosphirene. Angew. Chem., Int. Ed. 1995, 34, 1849-1852. (b) Back, O.; Henry-Ellinger, M.; Martin, C. D.; Martin, D.; Bertrand, G. ³¹P NMR Chemical Shifts of Carbene-Phosphinidene Adducts as an Indicator of the π -Accepting Properties of Carbenes. Angew. Chem., Int. Ed. 2013, 52, 2939-2943. (c) Doddi, A.; Bockfeld, D.; Nasr, A.; Bannenberg, T.; Jones, P. G.; Tamm, M. N-Heterocyclic Carbene-Phosphinidene Complexes of the Coinage Metals. Chem. - Eur. J. 2015, 21, 16178-16189. (d) Cicač-Hudi, M.; Bender, J.; Schlindwein, S. H.; Bispinghoff, M.; Nieger, M.; Grützmacher, H.; Gudat, D. Direct Access to Inversely Polarized Phosphaalkenes from Elemental Phosphorus or Polyphosphides. Eur. J. Inorg. Chem. 2016, 649-658. (e) Krachko, T.; Slootweg, J. C. N-Heterocyclic Carbene-Phosphinidene Adducts: Synthesis, Properties, and Applications. Eur. J. Inorg. Chem. 2018, 2018, 2734-2754.

(6) (a) Wang, Y.; Xie, Y.; Wei, P.; King, R. B.; Schaefer, H. F., III; Schleyer, P. vR.; Robinson, G. H. Carbene-Stabilized Diphosphorus. J. Am. Chem. Soc. **2008**, 130, 14970–14971. (b) Back, O.; Kuchenbeiser, G.; Donnadieu, B.; Bertrand, G. Nonmetal-Mediated Fragmentation of P₄: Isolation of P₁ and P₂ Bis(carbene) Adducts. Angew. Chem., Int. Ed. **2009**, 48, 5530–5533.

(7) Roy, S.; Mondal, K. C.; Kundu, S.; Li, B.; Schürmann, C. J.; Dutta, S.; Koley, D.; Herbst-Irmer, R.; Stalke, D.; Roesky, H. W. Two Structurally Characterized Conformational Isomers with Different C-P Bonds. *Chem. - Eur. J.* **2017**, *23*, 12153–12157.

(8) Kundu, S.; Li, B.; Kretsch, J.; Herbst-Irmer, R.; Andrada, D. M.; Frenking, G.; Stalke, D.; Roesky, H. W. An Electrophilic Carbene-Anchored Silylene-Phosphinidene. *Angew. Chem., Int. Ed.* **2017**, *56*, 4219–4223.

(9) (a) Hansmann, M. M.; Jazzar, R.; Bertrand, G. Singlet (phosphino)phosphinidenes are Electrophilic. *J. Am. Chem. Soc.* **2016**, *138*, 8356–8359. (b) Liu, L.; Ruiz, D. A.; Munz, D.; Bertrand, G. A Singlet Phosphinidene Stable at Room Temperature. *Chem* **2016**, *1*, 147–153.

(10) Transue, W. J.; Velian, A.; Nava, M.; Garca-Iriepa, C.; Temprado, M.; Cummins, C. C. Mechanism and Scope of Phosphinidene Transfer from Dibenzo-7-phosphanorbornadiene Compounds. J. Am. Chem. Soc. 2017, 139, 10822–10831.

(11) Weber, L. Phosphaalkenes with Inverse Electron Density. *Eur. J. Inorg. Chem.* **2000**, 2425–2441.

(12) Frison, G.; Sevin, A. Substituent Effects in Polarized Phosphaalkenes: A Theoretical Study of Aminocarbene-Phosphinidene Adducts. J. Organomet. Chem. 2002, 643-644, 105–111.

(13) (a) Adiraju, V. A. K.; Yousufuddin, M.; Dias, H. V. R. Copper(I), Silver(I) and Gold(I) Complexes of N-Heterocyclic Carbene-Phosphinidene. *Dalton Trans.* 2015, 44, 4449–4454.
(b) Balmer, M.; Weigend, F.; Hänisch, Cv. Low-Valent Group 14 NHC-Stabilized Phosphinidenide ate Complexes and NHC-Stabilized K/P-Clusters. *Chem. - Eur. J.* 2019, 25, 4914–4919. (c) Doddi, A.; Peters, M.; Tamm, M. N-Heterocyclic Carbene Adducts of Main Group Elements and Their Use as Ligands in Transition Metal Chemistry. *Chem. Rev.* 2019, 119, 6994–7112.

(14) (a) Kundu, S.; Sinhababu, S.; Siddiqui, M. M.; Luebben, A. V.; Dittrich, B.; Yang, T.; Frenking, G.; Roesky, H. W. Comparison of Two Phosphinidenes Binding to Silicon (IV) Dichloride as well as to Silylene. J. Am. Chem. Soc. **2018**, 140, 9409–9412. (b) Lemp, O.; Balmer, M.; Reiter, K.; Weigend, F.; von Hänisch, C. An NHC-Phosphinidenyl as a Synthon for New Group 13/15 Compounds. *Chem. Commun.* **2017**, *53*, 7620–7623. (c) Balmer, M.; Franzke, Y. J.; Weigend, F.; von Hänisch, C. Low-Valent Group 14 Phosphinidenide Complexes [({SIDipp}P)₂M] Exhibit P–M $p\pi$ – $p\pi$ Interaction (M = Ge, Sn, Pb). *Chem. - Eur. J.* **2020**, *26*, 192–197.

(15) Nesterov, V.; Baierl, R.; Hanusch, F.; Ferao, A. E.; Inoue, S. N-Heterocyclic Carbene-Stabilized Germanium and Tin Analogues of Heavier Nitriles: Synthesis, Reactivity, and Catalytic Application. *J. Am. Chem. Soc.* **2019**, *141*, 14576–14580.

(16) (a) Peters, M.; Doddi, A.; Bannenberg, T.; Freytag, M.; Jones, P. G.; Tamm, M. N-Heterocyclic Carbene-Phosphinidene and Carbene-Phosphinidenide Transition Metal Complexes. *Inorg. Chem.* **2017**, *56*, 10785–10793. (b) Doddi, A.; Bockfeld, D.; Bannenberg, T.; Jones, P. G.; Tamm, M. N-Heterocyclic Carbene-Phosphinidyne Transition Metal Complexes. *Angew. Chem., Int. Ed.* **2014**, *53*, 13568–13572.

(17) Kundu, S.; Sinhababu, S.; Luebben, A. V.; Mondal, T.; Koley, D.; Dittrich, B.; Roesky, H. W. Reagent for Introducing Base-Stabilized Phosphorus Atoms into Organic and Inorganic Compounds. J. Am. Chem. Soc. 2018, 140, 151–154.

(18) Kulkarni, A.; Arumugam, S.; Francis, M.; Reddy, P. G.; Nag, E.; Gorantla, S. M. N. V. T.; Mondal, C.; Roy, S. Solid-State Isolation of Cyclic Alkyl (Amino) Carbene (cAAC)-Supported Structurally Diverse Alkali Metal-Phosphinidenides. *Chem. - Eur. J.* **2021**, *27*, 200–206.

(19) (a) Wang, Y.; Quillian, B.; Wei, P.; Wannere, C. S.; Xie, Y.; King, R. B.; Schaefer, H. F.; Schleyer, P. vR.; Robinson, G. H. A Stable Neutral Diborene Containing a B-B Double Bond. *J. Am. Chem. Soc.* **2007**, *129*, 12412–12413. (b) Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond. *Science* **2012**, *336*, 1420–1422. (c) Arrowsmith, M.; Braunschweig, H.; Stennett, T. E. Formation and Reactivity of Electron-Precise B-B Single and Multiple Bonds. *Angew. Chem., Int. Ed.* **2017**, *56*, 96–115. (20) (a) Soleilhavoup, M.; Bertrand, G. Borylenes: An Emerging

(20) (a) Soleilhavoup, M.; Bertrand, G. Borylenes: An Emerging Class of Compounds. *Angew. Chem., Int. Ed.* 2017, 56, 10282–10292.
(b) Soleilhavoup, M.; Bertrand, G. Stable Carbenes, Nitrenes, Phosphinidenes, and Borylenes: Past and Future. *Chem* 2020, 6, 1275–1282.

(21) Goettel, J. T.; Braunschweig, H. Recent Advances in Boron-Centered Ligands and their Transition Metal Complexes. *Coord. Chem. Rev.* 2019, 380, 184–200.

(22) Pranckevicius, C.; Weber, M.; Krummenacher, I.; Phukan, A. K.; Braunschweig, H. Phosphinoborylenes as Stable Sources of Fleeting Borylenes. *Chem. Sci.* **2020**, *11*, 11055–11059.

(23) (a) Kretschmer, R.; Ruiz, D. A.; Moore, C. E.; Rheingold, A. L.; Bertrand, G. One-, Two-, and Three-Electron Reduction of a Cyclic Alkyl (Amino) Carbene–SbCl₃ Adduct. *Angew. Chem., Int. Ed.* **2014**, 53, 8176–8179. (b) Helling, C.; Schulz, S. Long-Lived Radicals of the Heavier Group 15 Elements Arsenic, Antimony, and Bismuth. *Eur. J. Inorg. Chem.* **2020**, 2020, 3209–3221.

(24) Balmer, M.; Gottschling, H.; von Hänisch, C. Phosphaalkene-Substituted Organo-Group 15 Compounds: Synthesis and Characterisation of (NHC)P-EtBu₂ (E = P, As, Sb and Bi). *Chem. Commun.* **2018**, *54*, 2659–2661.

(25) Szynkiewicz, N.; Ordyszewska, A.; Chojnacki, J.; Grubba, R. Diaminophosphinoboranes: Effective Reagents for Phosphinoboration of CO₂. *RSC Adv.* **2019**, *9*, 27749–27753.

(26) Wieber, M.; Wirth, D.; Fetzer, I. New Synthetic Routes for Organohalostibanes. Z. Anorg. Allg. Chem. **1983**, 505, 134–137.

(27) Mondal, K. C.; Roy, S.; Maity, B.; Koley, D.; Roesky, H. W. Estimation of σ -Donation and π -Backdonation of Cyclic Alkyl (amino) Carbene-Containing Compounds. *Inorg. Chem.* **2016**, *55*, 163–169.

(28) Pyykkö, P.; Atsumi, M. Molecular Single-Bond Covalent Radii for Elements 1-118. *Chem. - Eur. J.* **2009**, *15*, 186–197.

(29) Walley, J. E.; Warring, L. S.; Kertész, E.; Wang, G.; Dickie, D. A.; Benkő, Z.; Gilliard, R. J., Jr. Indirect Access to Carbene Adducts of

Bismuth-and Antimony-Substituted Phosphaketene and their Unusual Thermal Transformation to Dipnictines and [(NHC)₂OCP][OCP]. *Inorg. Chem.* **2021**, *60*, 4733–4743.

(30) Bader, R. F. W. Atoms in Molecules-A Quantum Theory; Oxford University Press: New York, 1990.

(31) Gorantla, S. M. N. V. T.; Francis, M.; Roy, S.; Mondal, K. C. Bonding and Stability of Sonor Ligand-Supported Heavier Analogues of Cyanogen Halides (L')PSi(X)(L). *RSC Adv.* **2021**, *11*, 6586–6603.

(32) Rodrigues, R. R.; Dorsey, C. L.; Arceneaux, C. A.; Hudnall, T. W. Phosphaalkene vs. Phosphinidene: The Nature of the P–C Bond in Carbonyl-Decorated Carbene \rightarrow PPh Adducts. *Chem. Commun.* **2014**, *50*, 162–164.

(33) Larocque, T. G.; Lavoie, G. G. Reactivity Study of Low-Coordinate Phosphaalkene Imes = PPh with Grubbs First-Generation Ruthenium Benzylidene Complexes. *New J. Chem.* **2014**, *38*, 499–502.

(34) (a) Sidiropoulos, A.; Jones, C.; Stasch, A.; Klein, S.; Frenking, G. N-Heterocyclic Carbene Stabilized Digermanium(0). *Angew. Chem., Int. Ed.* **2009**, *48*, 9701–9704. (b) Rupar, P. A.; Jennings, M. C.; Baines, K. M. Synthesis and Structure of N-heterocyclic Carbene Complexes of Germanium(II). *Organometallics* **2008**, *27*, 5043–5051. (c) Karnop, M.; Mont, W. W. D.; Jones, P. G.; Jeske, J. Dichlorogermylene-Alkyldichlorophosphane Reactions Revisited: Characterisation of Bis (trichlorogermyl) phosphanes, Trichlorogermyldiphosphanes, and Ge-P Heterocycles. *Chem. Ber.* **1997**, *130*, 1611–1618.

(35) Back, O.; Donnadieu, B.; Parameswaran, P.; Frenking, G.; Bertrand, G. Isolation of Crystalline Carbene-Stabilized P_2 -Radical Cations and P_2 -Dications. *Nat. Chem.* **2010**, *2*, 369–373.

(36) Brant, A. T.; Buchanan, D. A.; McClory, J. W.; Adamiv, V. T.; Burak, Ya.V.; Halliburton, L. E.; Giles, N. C. Photoluminescence from Ag^{2+} Ions in Lithium Tetraborate (Li₂B₄O₇) Crystals. *J. Lumin.* **2014**, 153, 79–84.

Recommended by ACS

[Nb₆Cl₁₄(pyrazine)₄], a Versatile Precursor for Ligand-Supported Hexanuclear Niobium Cluster Compounds: Synthesis, Characterization, Follow-Up Reactions, an...

Eric Sperlich and Martin Köckerling JANUARY 24, 2022 INORGANIC CHEMISTRY

READ 🗹

Sn,P-Peri-Substituted Naphthalene as a Ligand for Transition Metals

Michal Aman, Roman Jambor, et al. AUGUST 03, 2022 ORGANOMETALLICS

READ 🗹

2-Aryl-1,3-Benzoxaphospholes as Unwilling Participants for Catalytic Suzuki-Miyaura CC Coupling Reactions

Alexandra B. Grimm, John D. Protasiewicz, et al. OCTOBER 06, 2021 ORGANOMETALLICS

An Effective Osmium Precatalyst for Practical Synthesis of Diarylketones: Preparation, Reactivity, and Catalytic Application of [OsH-*cis*-(CO)₂-*mer*-{ κ^3 -*P*,*B*,*P*'-B(NC...

Fei Fang, Xuenian Chen, *et al.* NOVEMBER 02, 2021 ORGANOMETALLICS

READ 🗹

READ

Get More Suggestions >